设为首页 - 加入收藏 华夏网 ()- 云主机,资讯,互联网,人工智能,云计算,大赢家论坛,区块链,VR,站长网!
热搜: 平台 google 2019 用户
当前位置: 主页 > 大赢家论坛 > 正文

浅谈ODS与DW的区别-数据项目实战总结

发布时间:2021-01-11 06:03 所属栏目:[大赢家论坛] 来源:网络整理
导读:浅谈ODS与DW的区别-数据项目实战总结 ? ODS 全称operation data store 或者 operational data store,中文意思是操作型数据存储( 数据被操作产生的,例如电商交易数据 ( 客户买东西订单 )? 行业订单 工单数据(客户投诉数据) ),或者有的地方也叫一点红论坛数

浅谈ODS与DW的区别-数据项目实战总结

?

ODS 全称operation data store 或者 operational data store,中文意思是操作型数据存储(数据被操作产生的,例如电商交易数据 (客户买东西订单)? 行业订单 工单数据(客户投诉数据) ),或者有的地方也叫一点红论坛数据仓储

1、在业务系统和数据仓库之间形成一个隔离层
?
一般的数据仓库应用系统都具有非常复杂的数据来源,这些数据存放在不同的地理位置、不同的数据库、不同的应用之中,从这些业务系统对数据进行抽取并不是一件容易的事。因此,ODS用于存放从业务系统直接抽取出来的数据,这些数据从数据结构、数据之间的逻辑关系上都与业务系统基本保持一致,因此在抽取过程中极大降低了数据转化的复杂性,而主要关注数据抽取的接口、数据量大小、抽取方式等方面的问题。
?
2、转移一部分业务系统细节查询的功能
?
在数据仓库建立之前,大量的报表、分析是由业务系统直接支持的(比如 市场部门要看昨天的经营分析情况 如果没有数据仓库系统 就只能直接对业务生产系统库进行临时各种需求的分析查询),在一些比较复杂的报表生成过程中,对业务系统的运行产生相当大的压力。ODS的数据从粒度、组织方式等各个方面都保持了与业务系统的一致,那么原来由业务系统产生的报表、细节数据的查询自然能够从ODS中进行,从而降低业务系统的查询压力。

粒度 注:

对于一条操作型数据来说 有很多个属性 以电信行业投诉工单为例 ,有投诉时间 号码归属地省 号码归属地市 投诉号码? 用户唯一标示 投诉类型 投诉内容等等。

最细粒度 意思就是 到用户唯一id 的统计数据,即详单数据

粗一点的粒度 即是不到用户这么细的统计数据 比如 到地市的统计数据 如 xx市 投诉用户总数


3、完成数据仓库中不能完成的一些功能
?
一般来说,带有ODS的数据仓库体系结构中,DW层所存储的数据都是进行汇总过的数据,并不存储每笔交易产生的细节数据,但是在某些特殊的应用中,可能需要对交易细节数据进行查询,这时就需要把细节数据查询的功能转移到ODS来完成,而且ODS的数据模型按照面向主题的方式进行存储,可以方便地支持多维分析(指可以根据多个维度汇总生成统计数据)等查询功能。

多维分析举例:还是以电信行业投诉工单为例,时间 号码归属地省市 投诉类型 这些都是常见的维度 ,可以统计一个月 某个省有多少工单数 或者 一天某个市 投诉宽带慢(投诉类型)的工单有多少个,类似这些 就叫多维分析


在一个没有ODS层的数据仓库应用系统体系结构中,数据仓库中存储的数据粒度是根据需要而确定的,但一般来说,最为细节的业务数据也是需要保留的,实际上也就相当于ODS,但与ODS所不同的是,这时的细节数据不是“当前、不断变化的”数据,而是“历史的,不再变化的”数据。

?

数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制

?

?

1、数据仓库是面向主题的;操作型数据库的数据组织面向事务处理任务,而数据仓库中的数据是按照一定的主题域进行组织。主题是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。
主题举例:

移动某省经分系统 领导和市场部决策分析时关注的 几大重点方面 :4G 终端 政企 渠道 宽带等,各主题之间可能相互还有联系 ,且比如渠道这个主题 可能核和渠道管理系统 crm系统 计费系统 都想关,因为需要从这些系统取数据


2、数据仓库是集成的,数据仓库的数据有来自于分散的操作型数据,将所需数据从原来的数据中抽取出
?数据仓库的核心工具
来,进行加工与集成,统一与综合之后才能进入数据仓库;
数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
?
数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
?
数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到当前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
?
3、数据仓库是不可更新的,数据仓库主要是为决策分析提供数据,所涉及的操作主要是数据的查询;
?
4、数据仓库是随时间而变化的,传统的关系数据库系统比较适合处理格式化的数据,能够较好的满足商业商务处理的需求。稳定的数据以只读格式保存,且不随时间改变。
?
5、汇总的。操作性数据映射成决策可用的格式。
?
6、大容量。时间序列数据集合通常都非常大。
?
7、非规范化的。Dw数据可以是而且经常是冗余的。

????? 跟业务生产系统严格要求的数据不能冗余的一致准确性不同? ,dw的数据经常是冗余的 不同的表可能都有某个属性信息,因为dw表的数据通常都是很大量的 或者高度聚合过的,如果想取某个属性 要通过表关联 这样的时间消耗是很大的 ,或者都是聚合过得表 无法通过关联取得想要的指标
?
8、元数据。将描述数据的数据保存起来。

包括数据源的描述信息 和 自己库、表的描述信息 。像源库的ip信息 自己库的ip信息 都属于元数据信息,通常这些还挺重要 当ods涉及到数据共享的时候,还有比较重要的就是像一些字段的编码 解释 比如 是否智能机 0 1两个值 性别等。或者客户每月消费等级 1 代表1-100元 2 代表 100-150元。此类信息看着很简单 但是实际做好元数据统一管理很重要。项目组曾经出现过 有人月初误把一个是否智能机的元数据维表 的字段 0 1值改成了 Y N 。导致所有的涉及到的定时执行的存储过程 用的 case when 来统计智能机和非智能机的数量 全部出问题 。最后结果是全体加班重新跑数据。

?
9、数据源。数据来自内部的和外部的非集成操作系统。

数据仓库和ods的数据源通常都是多样化 有db? 文本 ws接口 消息队列等

【免责声明】本站内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。

网友评论
推荐文章